Proje Danışmanlığı

▪ Güneş Enerjisi Projeleri

VET ENERGY, Güneş Enerjisi Projelerin’de, üretim sahasının tespiti PV panellerinin belirlenmesi, bölge dağıtım şirketi izinleri, RTU pano ve scada sistemlerinin kurulumlarını gerçekleştirmektedir.

Ayrıca Güneş Enerjisi Projeleri’nin yatırım ve geri dönüş finansman modellerinin yatırımcı adına oluşturmakta ve takip etmektedir.

▪ Rüzgar Enerjisi Projeleri

VET ENERGY, Rüzgar Enerjisi Projelerin’de Avrupa’nın en önemli Rüzgar Tribünü üreticisi firmaları ile partnerlik gerçekleştirilmektedir. Rüzgar Enerjisi Projelerin’de

▪ Rüzgar ölçümleme direklerinin montajını ve ölçümlemesini

▪ Ön lisans ve lisans başvurularını

▪ EPDK süreçlerinin takibini ve finansman modellerini yatırımcıya hizmet olarak sunmaktadır.

www.w2e-rostock.de

    Güneş Enerjisi

    ISIL GÜNEŞ TEKNOLOJİLERİ

    1. DÜŞÜK SICAKLIK SISTEMLERİ

    Düzlemsel Güneş Kollektörleri: Güneş enerjisini toplayan ve bir akışkana ısı olarak aktaran çeşitli tür ve biçimlerdeki aygıtlardır. En çok evlerde sıcak su ısıtma amacıyla kullanılmaktadır. Ulaştıkları sıcaklık 70°C civarındadır. Düzlemsel güneş kollektörleri, üstten alta doğru, camdan yapılan üst örtü, cam ile absorban plaka arasında yeterince boşluk, metal veya plastik absorban plaka, arka ve yan yalıtım ve bu bölümleri içine alan bir kasadan oluşmuştur. Absorban plakanın yüzeyi genellikte koyu renkte olup bazen seçiciliği artıran bir madde ile kaplanır. Kollektörler, yörenin enlemine bağlı olarak güneşi maksimum alacak şekilde, sabit bir açıyla yerleştirilirler. Güneş kollektörlü sistemler tabii dolaşımlı ve pompalı olmak üzere ikiye ayrılır. Bu sistemler evlerin yanında, yüzme havuzları ve sanayi tesisleri için de sıcak su sağlanmasında kullanılır. Bu konudaki Ar-Ge çalışmaları sürmekle birlikte, bu sistemler tamamen ticari ortama girmiş durumdadırlar. Dünya genelinde kurulu bulunan güneş kollektörü alanı 30 milyon m2′ nin üzerindedir. En fazla güneş kollektörü bulunan ülkeler arasında ABD, Japonya, Avustralya İsrail ve Yunanistan yer almaktadır. Türkiye, 7,5 milyon m² kurulu kollektör alanı ile dünyanın önde gelen ülkelerinden biri konumundadır.

     

       Güneş Kollektörleri

    Vakumlu Güneş Kollektörleri: Bu sistemlerde, vakumlu cam borular ve gerekirse absorban yüzeyine gelen enerjiyi artırmak için metal ya da cam yansıtıcılar kullanılır. Bunların çıkışları daha yüksek sıcaklıkta olduğu için (100-120°C), düzlemsel kollektörlerin kullanıldığı yerlerde ve ayrıca yiyecek dondurma, bina soğutma gibi daha geniş bir yelpazede kullanılabilirler.

    Güneş Havuzları: Yaklaşık 5-6 metre derinlikteki suyla kaplı havuzun siyah renkli zemini, güneş ışınımını yakalayarak 90°C sıcaklıkta sıcak su eldesinde kullanılır. Havuzdaki ısının dağılımı suya eklenen tuz konsantrasyonu ile düzenlenir, tuz konsantrasyonu en üstten alta doğru artar. Böylece en üstte soğuk su yüzeyi bulunsa bile havuzun alt kısmında doymuş tuz konsantrasyonu bulunan bölgede sıcaklık yüksek olur. Bu sıcak su bir eşanjöre pompalanarak ısı olarak yararlanılabileceği gibi Rankin çevrimi ile elektrik üretiminde de kullanılabilinir. Güneş havuzları konusunda en fazla İsrail’de çalışma ve uygulama yapılmıştır. Bu ülkede 150 kW gücünde 5 MW gücünde iki sistemin yanında Avustralya’da 15 kW ve ABD’de 400 kW gücünde güneş havuzları bulunmaktadır.

    Güneş Bacaları: Bu yöntemde güneşin ısı etkisinden dolayı oluşan hava hareketinden yararlanılarak elektrik üretilir. Güneşe maruz bırakılan şeffaf malzemeyle kaplı bir yapının içindeki toprak ve hava, çevre sıcaklığından daha çok ısınacaktır. Isınan hava yükseleceği için, çatı eğimli yapılıp, hava akışı çok yüksek bir bacaya yönlendirilrse baca içinde 15 m/sn hızda hava akışı-rüzgar oluşacaktır. Baca girişine yerleştirilecek yatay rüzgar türbini bu rüzgarı elektriğe çevirecektir. Bir tesisin gücü 30-100 MW arasında olabilir.Deneysel bir kaç sistem dışında uygulaması yoktur.

    Su Arıtma Sistemleri: Bu sistemler esas olarak sığ bir havuzdan ibarettir. Havuzun üzerine eğimli şeffaf-cam yüzeyler kapatılır. Havuzda buharlaşan su bu kapaklar üzerinde yoğunlaşarak toplanırlar. Bu tür sistemler, temiz su kaynağının bulunmadığı bazı yerleşim yerlerinde yıllardır kullanılmaktadır. Su arıtma havuzları üzerinde yapılan Ar-Ge çalışmaları ilk yatırım ve işletme maliyetlerinin azaltılmasına ve verimin artırılmasına yöneliktir.

    Güneş Mimarisi: Bina yapı ve tasarımında yapılan değişikliklerle ısıtma, aydınlatma ve soğutma gerçekleştirilir. Pasif olarak doğal ısı transfer mekaniz-masıyla güneş enerjisi toplanır, depolanır ve dağıtılır. Ayrıca güneş kollektörleri, güneş pilleri vb. aktif ekipmanlar da yararlanılabilir.

    Ürün Kurutma ve Seralar: Güneş enerjisinin tarım alanındaki uygulamala-rıdır. Bu tür sistemler ilkel pasif yapıda olabileceği gibi, hava hareketini sağlayan aktif bile-şenler de içerebilir. Bu sistemler dünyada kırsal yörelerde sınırlı bir biçimde kullanılmaktadırlar.

     

    Güneş Ocakları: Çanak şeklinde ya da kutu şeklinde, içi yansıtıcı maddelerle kaplanmış güneş ocaklarında odakta ısı toplanarak yemek pişirmede kullanılır. Bu yöntem, Hindistan, Çin gibi bir kaç ülkede yaygın olarak kullanılmaktadır.

    2. YOĞUNLAŞTIRICI SİSTEMLER

    Parabolik Oluk Kollektörler: Doğrusal yoğunlaştırıcı termal sistemlerin en yaygınıdır. Kollektörler, kesiti parabolik olan yoğunlaştırıcı dizilerden oluşur. Kolektörün iç kısmındaki yansıtıcı yüzeyler, güneş enerjisini, kollektörün odağında yer alan ve boydan boya uzanan siyah bir absorban boruya odaklarlar. Kollektörler genellikle, güneşin doğudan batıya hareketini izleyen tek eksenli bir izleme sistemi üzerine yerleştirilirler. Enerjiyi toplamak için absorban boruda bir sıvı dolaştırılır. Toplanan ısı, elektrik üretimi için enerji santraline gönderilir. Bu sistemler yoğunlaştırma yaptıkları için daha yüksek sıcaklığa ulaşabilirler. (350-400°C) Doğrusal yoğunlaştırıcı termal sistemler ticari ortama girmiş olup, bu sistemlerin en büyük ve en tanınmış olanı 350 MW gücündeki şimdiki Kramer&Junction eski Luz International santrallarıdır.

                                                                                               Parabolik Oluk Kolektörler
     
    350 MW gücünde parabolik oluk güneş santralı-Kaliforniya

    Parabolik Çanak Sistemler: İki eksende güneşi takip ederek, sürekli olarak güneşi odaklama bölgesine yoğunlaştırırlar. Termal enerji, odaklama bölgesinden uygun bir çalışma sıvısı ile alınarak, termodinamik bir dolaşıma gönderilebilir ya da odak bölgesine monte edilen bir Stirling makine yardımı ile elektrik enerjisine çevrilebilir. Çanak-Stirling bileşimiyle güneş enerjisinin elektriğe dönüştürülmesinde % 30 civarında verim elde edilmiştir.

    Parabolik Çanak Güneş Isıl Elektrik Santralı (İspanya)

    Merkezi Alıcı Sistemler:Tek tek odaklama yapan ve heliostat adı verilen aynalardan oluşan bir alan, güneş enerjisini, alıcı denen bir kule üzerine monte edilmiş ısı eşanjörüne yansıtır ve yoğunlaştırır. Alıcıda bulunan ve içinden akışkan geçen boru yumağı, güneş enerjisini üç boyutta hacimsel olarak absorbe eder. Bu sıvı, Rankine makineye pompalanarak elektrik üretilir. Bu sistemlerde ısı aktarım akışkanı olarak hava da kullanılabilir, bu durumda sıcaklık 800°C’ye çıkar. Heliostatlar bilgisayar tarafından sürekli kontrol edilerek, alıcının sürekli güneş alması sağlanır. Bu sistemlerin kapasite ve sıcaklıkları, sanayi ile kıyaslanabilir düzeyde olup Ar-Ge çalışmaları devam etmektedir.

    Solar I Merkezi Alıcı Güneş Isıl Elektrik Santralı (İspanya)

    TÜRKİYE’DE GÜNEŞ ENERJİSİ

    Güneş Enerjisi Potansiyeli
    Ülkemiz, coğrafi konumu nedeniyle sahip olduğu güneş enerjisi potansiyeli açısından birçok ülkeye göre şanslı durumdadır. Devlet Meteoroloji İşleri Genel Müdürlüğünde (DMİ) mevcut bulunan 1966-1982 yıllarında ölçülen güneşlenme süresi ve ışınım şiddeti verilerinden yararlanarak EİE tarafından yapılan çalışmaya göre Türkiye’nin ortalama yıllık toplam güneşlenme süresi 2640 saat (günlük toplam 7,2 saat), ortalama toplam ışınım şiddeti 1311 kWh/m²-yıl  (günlük toplam 3,6 kWh/m²) olduğu tespit edilmiştir. Aylara göre Türkiye güneş enerji potansiyeli ve güneşlenme süresi değerleri ise Tablo-1’de verilmiştir.

    Tablo-1 Türkiye’nin Aylık Ortalama Güneş Enerjisi Potansiyeli
    Kaynak: EİE Genel Müdürlüğü
         AYLAR             AYLIK TOPLAM GÜNEŞ ENERJİSİ

    (Kcal/cm2-ay)        (kWh/m2-ay)

     

         GÜNEŞLENME SÜRESİ

    (Saat/ay)

    OCAK 4,45 51,75 103,0
    ŞUBAT 5,44 63,27 115,0
    MART 8,31 96,65 165,0
    NİSAN 10,51 122,23 197,0
    MAYIS 13,23 153,86 273,0
    HAZİRAN 14,51 168,75 325,0
    TEMMUZ 15,08 175,38 365,0
    AĞUSTOS 13,62 158,40 343,0
    EYLÜL 10,60 123,28 280,0
    EKİM 7,73 89,90 214,0
    KASIM 5,23 60,82 157,0
    ARALIK 4,03 46,87 103,0
    TOPLAM 112,74 1311 2640
    ORTALAMA 308,0 cal/cm2-gün 3,6 kWh/m2-gün 7,2 saat/gün

     

    Türkiye’nin en fazla güneş enerjisi alan bölgesi Güney Doğu Anadolu Bölgesi olup, bunu Akdeniz Bölgesi izlemektedir. Güneş enerjisi potansiyeli ve güneşlenme süresi değerlerinin bölgelere göre dağılımı da Tablo-2′ de verilmiştir.

    Ancak, bu değerlerin, Türkiye’nin gerçek potansiyelinden daha az olduğu, daha sonra yapılan çalışmalar ile anlaşılmıştır. 1992 yılından bu yana EİE ve DMİ,  güneş enerjisi değerlerinin daha sağlıklı olarak ölçülmesi amacıyla enerji amaçlı güneş enerjisi ölçümleri almaktadırlar. Devam etmekte olan ölçüm çalışmalarının sonucunda, Türkiye güneş enerjisi potansiyelinin eski değerlerden %20-25 daha fazla çıkması beklenmektedir.

    EİE’nin ölçü yaptığı 8 istasyondan alınan yeni ölçümler ve DMİ verileri yardımı ile 57 ile ait güneş enerjisi ve güneşlenme süreleri değerleri hesaplanarak bir kitapçık halinde basılmıştır.   (Güneş Işınımı Veri Satışı)

     

    Tablo-2 Türkiye’nin Yıllık Toplam Güneş Enerjisi Potansiyelinin Bölgelere Göre Dağılımı
    Kaynak: EİE Genel Müdürlüğü
                 BÖLGE           TOPLAM GÜNEŞ ENERJİSİ

    (kWh/m2-yıl)

          GÜNEŞLENME SÜRESİ

    (Saat/yıl)

    G. DOĞU ANADOLU 1460 2993
    AKDENİZ 1390 2956
    DOĞU ANADOLU 1365 2664
    İÇ ANADOLU 1314 2628
    EGE 1304 2738
    MARMARA 1168 2409
    KARADENİZ 1120 1971

     

    GÜNEŞ ENERJİSİ KULLANIMI

    Güneş Kollektörleri

    Ülkemizde çoğu Akdeniz ve Ege Bölgelerinde kullanılmakta olan, güneş enerjisini ısı enerjisine dönüştüren sıcak su üretme sistemleridir. Halen ülkemizde kurulu olan güneş kollektörü miktarı yaklaşık 12 milyon m² olup, yıllık üretim hacmi 750 bin m²dir ve bu üretimin bir miktarı da ihraç edilmektedir. Güneş enerjisinden ısı enerjisi yıllık üretimi 420 bin TEP civarındadır. Bu haliyle ülkemiz dünyada kayda değer bir güneş kollektörü üreticisi ve kullanıcısı durumundadır.

    Güneş kollektörlerinin ürettiği ısıl enerjinin birincil enerji tüketimimize katkısı yıllara göre aşağıda yer almaktadır.

     

             Yıl     Güneş Enerjisi Üretimi (bin TEP )
          1998                         210
          1999                         236
          2000                         262
          2001                         290
          2004                         375
          2007                         420

     

    Güneş Pilleri – Fotovoltaik Sistemler

    Güneş pilleri, halen ancak elektrik şebekesinin olmadığı, yerleşim yerlerinden uzak yerlerde ekonomik yönden uygun olarak kullanılabilmektedir. Bu nedenle ve istenen güçte kurulabilmeleri nedeniyle genellikle sinyalizasyon, kırsal elektrik ihtiyacının karşılanması vb. gibi uygulamalarda kullanılmaktadır. Ülkemizde çoğunluğu Orman Bakanlığı Orman Gözetleme Kuleleri, Türk Telekom, deniz fenerleri ve otoyol aydınlatmasında , Elektrik İşleri Etüt İdaresi Genel Müdürlüğü, Muğla Üniversitesi, Ege Üniversitesi gibi kamu kuruluşlarında olmak üzere küçük güçlerin karşılanması ve araştırma amaçlı kullanılan güneş pili kurulu gücü 1 MW’ a ulaşmıştır.

    DİĞER KURUMLARIN ÇALIŞMALARI
    Güneş enerjisi araştırma ve geliştirme konularında EİE’nin yanında Tübitak Marmara Araştırma Merkezi ve üniversiteler (Ege Üniversitesi Güneş Enerjisi Araştırma Enstitüsü, Muğla Üniversitesi, ODTÜ, Kocaeli Üniversitesi, Fırat Üniversitesi) çalışmalar yapmaktadır.

    Güneş enerjisi verilerinin ölçülmesi konusunda Devlet Meteoroloji İşleri Genel Müdürlüğü faaliyet göstermektedir. EİE de 1991 yılından bu yana kendi güneş enerjisi gözlem istasyonları kurmaktadır.

    Güneş enerjisi ile ilgili standartlar hazırlanması konusunda Türk Standartları Enstitüsü;

    – TS 3680 -Güneş Enerjisi Toplayıcıları-Düz

    – TS 3817 – Güneş Enerjisi – Su Isıtma Sistemlerinin Yapım, Tesis ve İşletme Kuralları

    konulu standartları hazırlamıştır. EİE bu standartların hazırlanmasında görev aldığı gibi, ısıl performans testlerini de gerçekleştirmektedir.

      Rüzgar Enerjisi

      Rüzgar Nedir?

      Rüzgar enerjisi, güneş radyasyonunun yer yüzeylerini farklı ısıtmasından kaynaklanır. Yer yüzeylerinin farklı ısınması, havanın sıcaklığının, neminin ve basıncının farklı olmasına, bu farklı basınç da havanın hareketine neden olur. Güneş ışınları olduğu sürece rüzgar olacaktır. Rüzgar güneş enerjisinin bir dolaylı ürünüdür. Dünyaya ulaşan güneş enerjisinin yaklaşık % 2 kadarı rüzgar enerjisine çevrilir. Dünya yüzeyi düzensiz bir şekilde ısınır ve soğur, bunun sonucu atmosferik basınç alanları oluşur, yüksek basınç alanlarından alçak basınç alanlarına hava akışı yapar.

      Bir tropikal ada üzerindeki rüzgarlar (ticaret rüzgar) gündüz ve gece boyunca hemen hemen sabit bir rüzgar akışı sağlayarak oldukça bağımlıdır. Ne yazık ki, dünyanın her bölgesinde ticaret rüzgarları yoktur ve hava sistemleri her bir kaç gün süresinde hareket eder. Rüzgar hızında, durgun bir havadan bir fırtınaya kadar çok farklı değişimler vardır. Elektrik enerjisi kullanımı zamana bağlı olduğu için rüzgardaki günlük ve mevsimsel değişimler önemli bir göstergedir.

      Coğrafya ve rüzgar

      Eğer tüm arazi düz ve pürüzsüz olsa idi, bir yerden diğerine rüzgar değişimi çok küçük olurdu. Tepelerin, vadilerin, akarsu vadilerinin, göllerin katılması ile bir karmaşık ve değişken rüzgar rejimi oluşur. Küçük ölçeklerde ağaçlar ve binalar da bu karmaşıklığa ilave edilir.

      Tepeler, platolar ve uçurumlar bir rüzgar türbini için yüksek rüzgar hızı bulunabilecek yerlerdir. Daha alçak ve kapalı olan vadilerde rüzgar hızı düşük olur. Bununla beraber, tüm vadilerde rüzgar hızının düşük olması zorunlu değildir. Rüzgar akışına paralel olduklarında vadiler kanal gibi davranabilir ve rüzgar kaynağını artırabilir. Vadideki bir daralma dar bir alanda havayı hunileyerek rüzgar akışını daha da kuvvetlendirebilir. Bu genellikle rüzgara bakan dar dağ geçitlerinde olur.

      Yakınındaki tepe üstleri rüzgarlı olsa bile vadiler genellikle geceleri sakindir. Soğuk ve ağır hava tepelerden aşağıya doğru akar ve vadilerde toplanır. Bunun üzerindeki bir seviyede soğuk havanın sonuç katmanı genel rüzgar akışından atılarak alçak arazilerde sakin durum oluşur. Bunun sonucu olarak, bir tepeye kurulan bir rüzgar türbini, daha alçak seviyeli bir yere kurulan rüzgar türbini çalışmazken, tüm gece boyunca güç üretebilir. Bu durum daha çok etrafına göre en az birkaç yüz feet yüksekliği olan yüksek arazilerde olur.

      Yüksek arazi özellikleri rüzgar akışını hızlandırabilir. Yaklaşan bir hava kütlesi zirveyi aşarken genellikle ince bir tabaka içine sıkıştırılır, bunun sonucu hızı artar. Bir sırt üzerinde, rüzgar sırt hattına dik estiği zaman en büyük hız oluşur. Izole tepeler ve dağlar rüzgarları sırtlara göre daha az hızlandırırlar, çünkü daha fazla hava yanlara akışa meyleder. Yüksek rüzgar türbülansı olmasından dolayı yüksek arazilerin downward tarafından sakınılmalıdır.

      Büyük su kütlelerine yakın kara alanları iki nedenden dolayı iyi rüzgarlı alanlar olabilir. İlk olarak, bir su yüzeyi bir kara yüzeyine göre çok daha düzgündür, bu nedenle su üzerinde akan hava daha az sürtünmeye tabidir. Hakim rüzgar yönünün sahile doğru olduğu sahil şeridi en iyi rüzgar alanıdır. İkinci, güneşli ir yaz gününde olduğu gibi, bölgesel rüzgar hafif olduğu zaman, deniz veya göl meltemi olarak bilinen yerel rüzgarlar oluşur, çünkü kara ve denizısınmaları farklı oranlardadır. Karalar suya göre çok daha çabuk ısındığı için, kara üzerindeki ısınan ve yükselen havanın yerine su üzerindeki soğuk hava gelir. Bu şekilde denizden karaya 8 ile 12 mph veya üzeri hızında meltem oluşur. Geceleri kara çok daha çabuk soğuduğu için meltem durur veya ters yönde eser.

      Yüzey Pürüzlülüğü

      Üzerinde estiği yüzey rüzgarın hızını etkiler. Ağaçlar ve binalar ile kaplı pürüzlü yüzeyler göl veya açık tarlalar gibi düzgün yüzeylere göre daha fazla sürtünme ve türbülans oluşturacaktır. Sürtünme ne kadar büyükse yere yakın rüzgar hızı o oranda düşüktür.

      Rüzgar Kullanım Alanları

      1-Elektrik üretme
      2-Pilleri şarj etme
      3-Su depolama
      4-Taşımacılık
      5-Su pompalama
      6-Tahılların öğütülmesi
      7-Soğutma

      Yakıtsız enerji

      ▪Nakliye yok.

      ▪Yakıt Fiyatı Değişkenliği yok.

      ▪Artan Talebin Baskısı yok.
      Enerji üretiminde rüzgar kaynağının üstünlükleri:

      •Temiz
      •Bedava
      •İklim değişikliği sorununa çözüm
      •Hava kirliliği sorununu azaltır
      •Enerji güvenliği sağlar
      •Enerji arzını çeşitlendirir
      •Yakıt ithalini önler
      •Yakıt maliyetleri yok
      •Ulusal kaynaklar için devletler arası anlaşmazlıkları önler
      •Kırsalda elektrik ağını geliştirir
      •İstihdam ve bölgesel kalkınma sağlar
      •Fosil yakıtların fiyat değişkenliğinden kaynaklanan karmaşıklığı önler
      •Modülerdir ve çabuk kurulur
      •İthalat bağımlılığı yok
      •Yakıt fiyatı riski yok
      •Karbon emisyonu yok
      •Kaynak tükenmesi yok – küresel rüzgar kaynağı küresel enerji talebinden daha büyük
      •Arazi dostu – rüzgar santrali içinde veya etrafında tarım/sanayi faaliyetleri yapılabilir
      •Uygulama esnekliği – büyük ölçekli ticari santraller veya ev tipi uygulamalar mümkün
      •Ulusal yarar – Geleneksel yakıtların aksine, enerji güvenliği açısından yakıt maliyetlerini ve uzun dönemli yakıt fiyatı risklerini eleyen ve ekonomik, politik ve tedarik riskleri açısından diğer ülkelere bağımlılığı ortadan kaldıran yerli ve her zaman kullanılabilir bir kaynaktır.

      Rüzgar Potansiyeli

      Dünyada rüzgar gücünde liderlik yapabilir piyasalar: Avustralya, Kanada, Çin, Fransa, Hindistan, İtalya, Filipinler, Polonya, Türkiye, İngiltere ve ABD. Bu piyasalar başlangıç safhasında ve fakat gelişme aşamasındadır ve ana rüzgar büyümesi buralarda gerçekleşebilir.

      TEKNİK OLARAK KULLANILABİLİR TOPLAM HAZIR KÜRESEL RÜZGAR KAYNAĞI TAHMİN EDİLEN TOPLAM DÜNYA ELEKTRİK TALEBİNİN İKİ MİSLİNDEN DAHA BÜYÜKTÜR.

      Dünya rüzgar kaynağı 53 TWh/yıl olarak hesaplanmakta, 2020 yılında dünya elektrik talebi artışının 25,579 TWh/yıl olacağı öngörülmektedir.

      2020 yılına kadar dünya elektrik tüketiminin %12 miktarını rüzgar enerjisinden karşılama senaryosuna göre yatırımlar, maliyetler ve istihdam:

      2020 yılında 1,245 GW dünya rüzgar gücü hedefine ulaşmak için gereken yatırım miktarı 692 milyardır. Bu süre içinde üretim maliyetlerinin 3.79 e-cents/kWh’dan 2.45 e-cents/kWh’a düşmesi beklenmektedir. Yine bu süre içinde dünya çapında rüzgar endüstrisinde imalat, kurulum ve diğer iş kollarında 2.3 milyon iş imkanı sağlanacaktır.

      Rüzgar enerjisi enerji geleceğimizde ve iklim değişikliğini önlemede büyük bir role sahiptir. Halen dünyada en hızlı büyüyen enerji sektörlerinden biridir. Gelişmiş ülkeler seragazı gaz emisyonlarından korunmak için dünyada rüzgar gücü geliştirmelerini teşvik etmek ve desteklemek zorundadır.

      Rüzgar gücü küresel çapta kullanıma hazır ve gerekli olan güç teknolojilerinin en etkililerinden biridir ve diğer geleneksel güç santrallerinden çok daha çabuk kurulabilmektedir. Rüzgar türbinlerinde küresel piyasa 2020 yılına kadar şimdiki 8 milyer € dan 80 milyar € yıllık iş hacmine çıkacaktır.

      Zamanımızın küresel enerji politikaları sadece iklim değişikliği ile değil, aynı zamanda enerji taleb artışları ve enerji sağlamada güvenlik konuları ile de önemlidir. Bu üç konuda rüzgar enerjisi bir liderlik adayıdır.

      Bir rüzgar türbininden üretilen elektrik enerjisinin en verimli şekilde kullanılması için enerji tüketimi rüzgar mevcudiyetine göre uyarlanmalıdır (ulusal şebekeye çok az bir besleme yapıldığı varsayılarak). Hava tahminleri yüksek ve düşük rüzgar periyotlarının planlanmasında kullanılabilirler.

      İklim Değişikliği

      ABD’de yapılan bir araştırmaya göre sadece California’nın rüzgar potansiyeli 1.2 milyon ton CO 2 ve 15 milyon ton diğer kirleticileri azaltır, bu miktar aynı hava kalitesini sağlamak için 90 milyon ile 175 milyon ağaçlı bir ormana karşılık gelir.

      Dünya elektrik ihtiyacının 12% si rüzgardan sağlanabilir; Endüstri raporuna göre 2020 yılına kadar 11 milyar ton CO 2 azaltılabilir.

      Rüzgar enerjisi enerji geleceğimizde ve iklim değişikliğini önlemede büyük bir role sahiptir. Halen dünyada en hızlı büyüyen enerji sektörlerinden biridir. G8 ülkeleri seragazı gaz emisyonlarından korunmak için dünyada rüzgar gücü geliştirmelerini teşvik etmek ve desteklemek zorundadır. Avrupa’daki kurulu rüzgar gücü yılda 50 milyon tondan fazla CO 2 sakınması yapmaktadır.

      2030 yılına kadar küresel karbon emisyonunun 45% miktarı güç sektöründen kaynaklanacaktır.

      CO2 Emisyonunun Azaltılması

      Kyoto Protokolü iklim değişikliğine göre, AB 2010 yılına kadar kendi seragazı gaz emisyonlarını 1990 seviyelerine göre % 8 azaltmayı taahhüt etmiştir. Bu gün AB kurulu rüzgar gücü her yıl 50 milyon tonun üzerinde CO 2 koruması sağlamaktadır. Eğer bugünkü büyüme sürerse, 2010 yılına kadar, rüzgar enerjisi yılda 109 milyon ton koruma sağlayacaktır, bu miktar Kyoto Protokolünde belirlenen miktardan % 30 daha fazladır.

      Rüzgar Enerjisi Tarihçesi

      İnsanlık medeniyet tarihinde rüzgar çok önemli bir rol oynamıştır. Rüzgarın ilk kullanılması 500 yıl önce Mısır’da kayıkların bir sahilden diğerine yüzdürülmesinde kullanılmıştır. İlk tam rüzgar değirmeni MÖ 200 yılında antik Babylon’da inşa edilmiş olmalıdır, bu değirmen bir eksene tutturulmuş pervaneler ile dönüş hareketi üreten bir makinedir. MS 10. yy’a kadar doğu İran ve Afganistan’da 16 feetlik rüzgar yakalama kanatları ve 30 feet yüksekliği olan rüzgar değirmenlerinde tahıl öğütüldüğü bilinmektedir. Batı dünyası rüzgar değirmenlerini çok daha sonraları keşfetmiştir. Bu konudaki ilk yazılı kayıtlar 12 yy’a aittir. Birkaç yüzyıl sonra rüzgar değirmenleri geliştirilerek ve uyarlanarak su pompalamada kullanıldı.

      Çok pervaneli yeldeğirmenleri 19. yy ikinci yarısında ABD’de icat edilmiştir. 1889 yılında ABD’de 77 tane rüzgardeğirmeni fabrikası vardı ve yüzyılın sonunda rüzgar değirmeni ihracatı ABD ekonomisi için en büyük ihracat kalemi olmuştu. Dizel motorlar icat edilene kadar, ABD’deki büyük demiryolları büyük çok-pervaneli yeldeğirmenlerine bağlı kalmıştır (buhar lokomotifleri için su pompalama, yeldeğirmeni ile yapılmıştır).

      1930 ve 1940 lı yıllarda ABD de yüzbinlerce elektrik üreten rüzgar türbini imal edildi. Bunlarda yüksek hızda dönen ve elektrik generatörünü çalıştıran iki veya üç ince pervane vardı. Bu türbinler çiftliklere elektrik sağladılar, depolama pillerini doldurmada, radyo alıcılıranı çalıştırmada ve bir veya iki aydınlatma ampülünü çalıştırmada kullanıldılar. 1950 başlarında ulusal şebekelerin her eve ulaşacak kadar yaygınlaşması ve elektrik düzenleme yasalarının çıkarılması ile rüzgar türbini bir duraklama devresine girdi.

      1973 OPEC petrol ambargosunu takiben enerji fiyatlarındaki artış ve geleneksel enerji kaynaklarının sınırlılığı rüzgar enerjisine olan ilgiyi tekrar artırmıştır. Teşvikler ve resmi araştırma çalışmaları sonucu bir çok yeni türbin tasarımı yapılmıştır. Bazı modeller çok büyüktür. 300 feet pervane çaplı bir büyük türbin 700 evin elektrik ihtiyacını karşılayabilir. Konutlarda, çiftliklerde kullanılmak üzere bir çok yeni küçük-ölçekli model geliştirilmiştir.

      1970 li yıllarda ABD’de yaklaşık 50 tane yerli rüzgar türbin imalatçısı vardı.

      Rüzgar sistemleri için yeni bir pazar olarak “rüzgar tarlaları” 1980 başlarında başladı. 1978 yılında ABD’de çıkarılan yasa ile rüzgar enerjisine getirilen teşvik ile elektrik dağıtım şirketleri rüzgar enerjisinden üretilen elektriği almak zorundaydılar.

      Rüzgar Ölçümü

      Rüzgar da hava gibi genelde öngürelemez. Yerden yere ve zamandan zamana değişir. Görünmez olduğu için özel ölçüm aletleri kullanmaksızın ölçülemez. Rüzgar hızı etrafımızdaki ağaçlardan, binalardan, tepelerden ve vadilerden etkilenir. Rüzgar bir diffuse enerji kaynağı olarak başka bir yerde başka bir zamanda kullanılmak üzere biriktirilemez veya depolanamaz.

      Rüzgar Gücü

      Rüzgar gücü mümkün rüzgar enerjisinin bir ölçümüdür. Rüzgar gücü rüzgar hızının kübünün bir fonksiyonudur. Eğer rüzgar hızı iki misline çıkarsa rüzgardaki enerji sekiz faktörü ile artar (23). Bunun anlamı şudur; rüzgar hızındaki küçük değişiklikler rüzgar enerjisinde büyük değişikliklere neden olurlar. Örneğin, 10 mph bir hız ölçümü yapan birine karşı başka biri aynı zamanda komşu bir yerde 12.6 mph hız ölçümü yapsın. Bu 2.6 mph farkına karşılık rüzgar gücünde % 100 oranında bir fark vardır (103 = 1000, 12.63 = 2000). Yer seçimi veya ölçme hataları ile yapılabilecek küçük rüzgar hızı hataları bir rüzgar türbini yatırımında büyük hatalara neden olabilmektedir. Bu nedenle, rüzgar türbini satınalmadan önce, doğru ve sürekli bir rüzgar çalışması yapılmalıdır. Ekonomik olarak uygulanabilir olması için, bir rüzgar türbini kurulacak yerde yıllık ortalama en az 12 mph (5.4 m/s) rüzgar hızı olmalıdır. Bir rüzgar sistemi alınmadan önce çok iyi bir rüzgar incelemesi yapılmalıdır, kişisel gözlemlere göre bir rüzgar sistemi kurulamaz. İyi bir rüzgar incelemesi yapmadan rüzgar türbini satın alanlar genellikle sistemlerinin performansı ile hayal kırıklığına uğramışlardır. Hakim rüzgar yönünün bilinmesi rüzgar türbinin en az engel bulunan yöne kurmak açısından çok önemlidir.

      Rüzgardaki mümkün güç miktarı

      w = 1/2rAv3 eşitliği ile verilir.
      w = güç/enerji
      r= hava yoğunluğu
      A= kanat alanı
      v= rüzgar hızı

      Hava yoğunluğu yükseklikle, sıcaklıkla ve hava cepheleri ile değişir. Rüzgar gücü hesaplamalarında, hava cephelerinin etkisi önemsenmeyecek kadar küçüktür, böylece hava yoğunluğu formülü şöyledir:

      P=(1.325xP)/T
      T= Fahrenheit + 459.69 olarak sıcaklık
      P= Yüksekliğe göre düzeltilmiş Mercury basıncı (inch)

      Tipik ortalama hava sıcaklığı (59°F) deniz seviyesine indirgenerek hava yoğunluğu için bir standart değer kullanılabilir. Bu durumda güç eşitliği basit olarak aşağıdaki hale gelir:

      Basitleştirilmiş Güç Eşitliği

      Metrik birimler

      w = 0.625Av3
      w= güç (watt)
      A= rüzgar türbini kanatları tarafından süpürülen alan (m2)
      V= rüzgar hızı (m/s)

      Bu güç eşitliği rüzgar hızındaki artış ile rüzgar gücünde bir küplü artış gösterse de bile, uygulamada bir rüzgar türbininde gerçek güç artışı eşitlikte öngörülenden daha doğrusaldır. Bunun nedeni rüzgar türbininin mükemmel bir oranda verimli olmamasıdır. Bir rüzgar türbininin güç eğrisi gerçekte çok daha önemlidir. Sonuç olarak denilebilir ki, ortalama rüzgar hızındaki 2 mph artış bir türbin tarafından üretilen elektrik miktarında % 50 bir artış anlamına gelir.